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A Sequential Procedure for Determining the
*

Length of a Steady-State Simulation

Aver i ll ~~~. Law and John S. Carson

Un i versity of Wis~..unsin

A common problem faced by simulators is that of construct ing a

confidence interval for the steady-state mean of a stochastic process.

We have reviewed the existing procedures for this problem and found

that they all produce confidence intervals with coverages which may

be considerably l ower than desired . Thus , in many cases simulators

will have more confidence in their results than is justified.

In thi s paper we present a new sequenti al procedure based on

the method of batch means for constructing a confi dence interval

with coverage close to the desired level. Empirical results for a

large number of stochastic systems indicate that the new procedure

performs quite well.

*This research was supported by the Office of Naval Research under
contract N00014-76-C-0403 (~iR 047-145). 
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Let {X. , i > l} be a stochastic process wi th steady-state mean

= u r n  X~/n (with probability 1).
n

i= 1

A common problem faced by simulators is that of constructing a confi-

dence interval (c.i.) for ~~~. There are two basic approaches: (1)

Construct a c.i . from an arbitrary fixed sample size (2) Sequentially

increase the sample size until an ~acceptab1e ” c .i. can be constructed .

For the fixed sample size approach , five methods have been sug-

gested in the simulation literature : replication , batch means , spectrum

anal ysis, autoregressive representation , and regeneration cycles. (See

Crane and Iglehart [6,73, Fishman [10,11], Iglehart [12], and Law [14].)

Unfortunately, all of these methods have the drawback that if the total

sampl e si ze i s chosen too smal l , then the actua l coverage of a con-

structed c.i. may be considerably l ower than desired . This was empir-

ically shown for replication and batch means in [143, and will be

demonstrated for the other three methods in Law [16]. (These results

were reported at the 1976 Winter Simulatio n Conference.)

If the total sample size is made sufficiently large , then the

actual coverace will be close to the desired level ; however , what  is

sufficientl y larrje for one stochastic system may not be adequate for

another. Thus , in practice a simulato r w ill not know the actual

coverage of his c.i.
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The above summary suggests that a procedure is needed to determine

the total sample size necessary to achieve “acceptable ” coverage. Three

such procedures have been suggested . Fishma n [9] applied a procedure

based on autoregressive representation to 100 i ndependent simulatio n

runs o f an ~/~/1 queue with p = .9. On each run he attempted to con-

struct a 90% c.i. for the mean number of customers in system , L . He

found that between 66 and 79 percent of the c.i . ’s covered L , depending

on the choice of the initial sample size. F~obinson [20] applied a

similar sequential procedure based on regeneration cycles to 100 runs

of the M/M/l queue with p = .5. On each run he attempted to construct

a 90% c.i. for the mean delay in queue , d. He found that between 60

and 63 percent of the c.i. ’s covered d , depending on the initial sample

size. Mechanic and McKay [17] deve l oped a procedure based on batch

means that was difficult to understand and was never substantially

tested . However, it was their work that provided the initial motivation

for the sequential procedure presented in the next section .

The remainder of this paper is organized as follows . In Sections

1 and 2, respectively, we describe and justify the new procedure . The

results of testing the procedure on a large number of queueing , inven-

tory, and computer models are given in Section 3. Finall y, in Section

4 we summarize our findings and comment on the computational efficiency

of the procedure .

1 . The Procedure

Suppose we make a simulation run of length ‘~ and then divide the

resulting observations x~,x 2 , . . . , K into k batches of length r z

Let k’.(m) (j=l ,2 ,... ,k) be the sample mean of the observat ions in the 
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jth batch and let ~(k,m) = 

~~ 

be the grand sample mean . If m

is sufficientl y large , then the ~~.(m)’ s will be essentially uncorrelated

(see Section 2) and an approximate 100(1 - cc)% c.i. for i~ is given by

X’ik,m) ± tk_ i , i_ ~ ,2~.J
”
~Y~1X( k,/n) ] , (1)

where tk..l 1..~/2 
is the 1 -ct/2 point for a t distribution with k-i degrees

of freedom and

~2[~(kim)] 
= >~ [~j~

m~ 
- 
~(k m)]/k(k 

- 1). (2)

This approach to constructing a c.i . is called the method of batch means

(see (14]).

The validity of the c.i. given by (1) depends crucially on the ~~(rn) ’s

being approximately uncorrelated (see Section 2). We will attempt to

determine the presence of si gnificant correlation by estimating p 1 (m),

the lag 1 correlation between the ~ .(m) ’s. The usual es timator of p~ (rn)

Is

~1(k 1m) = ~~ 
[
~j
(m)_

~ (kim] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

However , if p 1 (k/2 ,m) and p 1 (k/2,m) are , respectively, the usual lag 1

estimators based on the firs t k/2 and last k/2 batches (k is assumed

to be even), then we can also e6timate p 1 (m) by the jackknifed estimator

-~~~ - - --  -- rn~~~~~ 
_
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~ (k ,m) = 2~ (k,m) — [~ ‘(k /2,m) + ~
2 (k /2,m)]/2.

1 1 1 1

We will use ~~(k,m) rather than ~~(k ,m) to estimate p 1 (m) since, in

general , it will be less biased (see Miller [18]).

We now state our sequential procedure .

Step 0. Let c = .225, n0 = 600, n 1 = 800, and i = 1.

Step l.a. Divide the n . observations into 400 batches of size
2-

m = n./400. Compute ~1 (400 ,m) from .~~ m) (1 l ,2,... ,400).

If ~1 (400,m) > c, go to Step l.c. If ~1 (4OO ,m) < 0 (see

Note 1), go to Step 2. Otherwise , go to Step l.b.

b. Divide n. into 200 batches of size 2m. Compute ~1 (200 ,2m)

from ~ .(2m) (j=l ,2,... ,200). (See Note 2.) If ~1 (2O0 ,2m) <

~1(400,m) (see Note 3), go to Step 2. Otherwise , go to

Step 1.c.

c. Replace i by i + 1 , set n~ = 2n~_2 (see Note 4), collect

the additional observations required , and go to Step l.a.

Step 2. Divide n. into 40 batches of size lOm . Use X~(lc ~n)

(j=1 ,2 ,... ,40) (see Note 2) in (1) to construct a c.i.

for i.

Notes:

1. If p 1 (m) < 0, then , as is discussed in Section 2, 40 batches of

size lOm will most likely produce a c.i. with at least 100(1 -

coverage.
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2. An appropriate number of the i~(m)’s may be averaged to compute

the ~.(2m)’s or the I.(lOm)’s.

3. If 0 < p 1 (m) < .225 and if p 1 (m ’) is decreasing for m ’ > m , then

batches of size l Oin are approximately uncorrelated (see Section 2).

We test to see if p 1 (m ’) is decreasing for m ’ > m by checking to

see whether p 1 (2m) < p 1 (m).

4. The successive sample sizes considered are 800,1200,1600,2400 

Thus , the total sample size is doubl ed every other iteration .

The sequential procedure which is described above uses 400 batches

of size in to decide when 40 batches of size lOin are uncorrelated . By

using 400 rather than 40 batches, the correlation estimator, which is

used to determine the stopping point , has a smaller bias and variance.

In fact, the procedure will not work well if the correlation is estimated

directly from 40 batches.

The next section gives a justification of the procedure. The reader

who is pr imar i ly interes ted in the procedure ’s performance may procee d

directly to Section 3.

2. Justification

In the following two subsections we discuss the general form of the

sequential procedure and the choice of the stopping value a.

A. General Form of the Procedure

Suppose that the observations x ,x2,. ..,x are f rom a covar iance

stationary process. For i=0, l ,...,n-l , let Ci = Cov[X .1X ..] and for

izO,1 ,... ,k-1 , let C.(m) = Cov(X.(m)~X~.~~(m)] and = C~(m)/C0(m).

The following lema, which Is proved in the appendix , shows that
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p.(m) 0 (i > 1) for su i fic ie nt l y 1dr~ ? -n .

Lenina 1 . If 0 C, < ~~~ , then ~~
- . (~~~~) 

- 0 d~ in for i=l, 2 , ...,k-l.

2. -
~~~

Let b (k ~r n) be defined by

where ~ 2 [ ~~(k ,,n) ] was given by (2). We now pro~e that 52[~ (k ,m)] is

asymptotically unbiased as in -÷

Theorem 2. If 0 < C~ < c~~, then ~~~~ 
-
~ 1 as ~ fo r a l l  ~ > 2.

2. -cx

Proof: It is easy to show that (see [14])

{ k/[1 + 2 (1 - i.! k ) ~~.( m) ] } -
b (k,m) = —_____________

k - i

The desired resu lt foll~ ws s ince ~~Jr . -* 0 as m + ~ ~ r L l ,2,...,k-l

by the lemma .

The above expression for h(k ,rr) sh. -
~~ ‘~~ thdt n~ l~k k ,rn)J is un bj as t ~l

when p i-i) = 0 f~.r ~=] ,2 , . . . , - , 
-, a negat i “e bias ,-n c 1) when

p.(m) > 0 Vi , ~rvi has a t n ~~it i -  ~ b ias ( h -  ~~~~~~ 
) 1) wn t’  o.(”~ 0 V~~.

The case ~~.~~‘i) ~ 0 y is of the nrea~ ~t corvern since o 2 [~~ ~~~~ will

then be undere stimated and tne ¶.o~wrini:~ of tht re sult inn c. i . is 1 ik e1 ~

to be less than desired.

~~ Fii,_ 
.. - . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—y. -. .. -~~~~ 
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If we choose m large enough so that the ~ Jm)’s are approximately

normally distributed in addition to being uncorrelated , then it becomes

plausible to proceed as if the V.(m) ’s were independent identically

distributed norma l random variables (r.v.’s) and to use (1) to construct

a c.i. for p.

There are three potential sources of error when using (1) to con-

struct a c.i.:

(1) Bias in a2[~(k m)] when in is too small for the X.(m) ’s to be

uncorrel a ted .

(2) Nonnormality of the X. (m)’s.

(3) The fact that {X.,i > l} is not, in practice , covariance sta-

tionary.

However, for simple queueing models (e.g., M/M/l) Law [14] found that

the bias in &2[~(k,m)] was the most serious source of error and that

nonnormality was not a problem for k approximately 20 or more. This

suggests that a sequential procedure based on batch means must be

able to determine that batch size , in, for which the ~~(m)’s are

approximately uncorrel ated .

To determine the types of correlation which can occur in practice ,

we studied the following processes for which p .(m) and b (k~m) can be

analytically computed :

(1) {D.,i > U for the M/M/ l queue (see Daley [8]) with

p = .5,.8, and .9, where D. is the delay in queue of the ith

customer.

(2) f~ .,i > l} for an (s,S) inventory system (see [14) for details) ,

where E . is the expenditure in the ith period .

- 

~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ .— 
.- - - - .  

~~~~~~~~~~~~ 
i1~iw .

~~~~~~~~
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(3) Thirty different AR(l), AR(2), and ARMA(l ,l) time series

models (see Box and Jenkins [3, p . 46]) with parameters

chosen over the entire range of feasible values.

From study ing these 34 stochastic processes , we found essentially

three types of behavior for p 1 (m) as a function of rn , examples of

which are shown in Figures 1 , 2, and 3. For type 1 behav ior the

lag 1 correlation p 1(-’T) strictly decreases to zero. If for some in ,

p 1 (m) < .4, then .9 < b (40 ,lOm ) < 1 and p 1 (l0m) .05. That is , i f

p 1 (m) < .4, then the var iance estimator based on 40 batches of size

lOin is approximately unbiased. The M/ 1’.I/ l queue exh i bi ts type 1

behavior.

In type 2 behavior , p 1
(m) changes direction one or more times

and then strictly decreases to zero. If for some m , p 1 (m) < .4 and

p 1 Cm ’) is decreasing for in ’ > m , then .9 < b (40,lOm) < 1 and

p 1(lOm ) .05. The M/M/ l queue with service in random order (SIRO)

is of this type (see Fi gure 4).

ror type 3 behavior , p 1 (m) < 0  and b (40,lOin) > 1 , for all in. In

this case the ~ .(l0m)’s may be correlated , but the coverage will be at

least as great as that desired. The (s ,S) inventory system exhibits

type 3 behavior.

We certainly do not claim that the above three types of behavior

are the onl y ones that can occur. In fact , for some of the time series

models we studied , r (m) can be positive or negative. However , if

p 1(m) > 0 for some r’i , then we found that type 1 behavior is followed ,

and if p 1 (m) < 0 for some m , then behavior similar to that of type 3

is followed .

-

~

_ - z

~

_.. —j— — ~~~~~~~~~~~~~ ~~~~~ - , - -—-.~~~~ -~-—---~--
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FIGURE CAPTIONS

Figure 1. Type 1 Behavior.

Figure 2. Type 2 Behavior.

Figure 3. Type 3 Behavior.
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Types 1 and 2 behavior described above explain why the procedure

checks for p 1 (m) < c and p 1 (m’) decreasing for m ’ >m . Type 3 behavior

ex p la ins why it checks for p 1
(m) < 0.

B. The Choice of the Stopping Va l ue a

The above discussion was predicated upon knowing p 1(m) which , in

fact, is estimated by ~p 1 (4O0 ,m). Thus , it is possible for p 1 (m) to be

much larger than .4, but to have the estimate ~1 (400 ,m) < .4, which

might result in the procedure ’s stopping prematurely. To determine how

small a should be to account for the sampling variability of ~1(400,m),

we applied our sequential procedure with various va l ues of a to the

M/M/1 FIFO queue, the M IM I] LIFO queue , and the MIMI1 SIRO queue , each

with p = .8. For each system we made 200 independent simulation runs of

the process {D.,i> l} and attempted to construct 90% c.i. ’s for d = 3.2.

The results of these simulations are given in Table I. Note that for

the FIFO and SIRO disciplines , a = .375 gives good coverage, but that

for the LIFO case a much smaller value of a is required . We chose

a = .225 as our stopping value because we felt that a true coverage

of 80% is the minimum acceptable coverage for a “90% c.i .” A smaller

value of a would result in better coverage for LIFO , but also in a

considerable increase in sample size for the other models. (These

additional data would not be wasted if a smaller c.i. half length was

desired.)

The fact that a smaller va l ue of a is required for the LIFO model

4 is due not to the variability of ~1 (400,m), but rather to p 1 (m)’S being

a more slowly decreasing functipn of in than for any of the other 44

models considered in this paper. This can be seen in Figure 4 where

we plot ~ 1 (m) (the avera ge of the 200 va l ues of ~1 (400,m)) as a function
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TABLE I. Proportion of Coverage and Average
Sample Size for Various Values of a.

M/M/l FIFO M/M/l LIFO M/M/1 SIRO

____ 

p = .8 p = .8 p = .8

Average Average Average
a Coverage Sample Coverage Sample Coverage Sample

Size Size Size

.375 .900 36464 .650 3882 .880 35616

.250 .900 59776 .760 15054 .860 59680

.225 .890 67584 .805 19100 .865 69280

.200 .890 77952 .825 26796 .860 77472

.150 .910 100992 .840 41058 .865 99008
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FIGURE CAPTION

Figure 4. ~~1(m) as a Function of m for the M/M/ 1

FIFO, LIFO, and SIRO Queues , each with 
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SIRO but decreases more slowly. In particular, ~1(m) < .4 for in = 6 ,

but ~1(lGn) .19 (~ 1 (m) < .4 implies ~~(1Oin ) .05 for the other models).

By choosing a = .225 , we are designing the sequential procedure to per-

form adequately in the “worst” case.

3. Empirical Resul ts

In order to see how well the sequential procedure works, we simulated

a large number of stochastic systems for which analytical results are

available. The results of these simulations are presented In the next

three subsections.

The random numbers, {u.,i > l}, used in these simulations were

generated from the following generator which Is available on the

Univac 1110:

— + 1) mod ~~ (i=1 ,2,...)

= r~/2~ (i=l ,2 ...),

where 10 is a specified seed. For a discussion of this generator, see

Coveyo u and Macpherson [5).

A. Queueing Systems

We fi rs t con sidered a variet y of simp le queueing systems . Let Es,,

~f, and 112 denote , respectively , the 4-Erlang , the exponential , and the

hyperexponent lal distributions with coefficients of variation .5 , 1 ,

and 2. (See Law [13] for further discussion of Ha.) For each of the

queueing systems ?.f/M/l (p — .5) , E~/M/ l (p = .8), 14/112/i (p = .8),

14/14/2 (p .8), N/Mu /Mu (p = .8) , we made 100 independent simulation

runs of the stochastic process > l} and attempted to construct

90% c.i. ’ s for d. For each system , E(A) 1 (the mean interarr iv a l

_ _ _ _  
- - -- -

~~~~~ - - -
~~~~~~~~~~~~~~

- -— — -
~~~~~~~~~~~~~~~ .- - :1
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time) and 
~ 

= 0 ~i .e., no customers are present at time zero). In

Table II we give for each system d, the proportion of the 100 c.i.’s

which covered d, the average sample size at termination , and the aver-

age c.i. half length divided by d. (We will henceforth call the aver-

age c.I. half length divided by p the “relative precision ” of the c.i.)

For completeness we also give the previous results for the M/M/ l queue

with p = .8 and FIFO , LIFO , and SIRO queue disciplines. Observe that

the average sample size at terminat ion is quite system dependent. For

example, the M/M/l queue with p = .8 requires a sample size about 8

times larger than that require d by the M/M/ l queue wi th p = .5. This

Is, of course, due to the fact that the process {D.,i > 1) Is more cor-

related for larger values of p.

For the M/M/ 1 queue it can be shown that (see [8)) an approximate

theoretical sample size of

a 
[E(A)]2p~(2 + - 4p

2 + 3){
t39 95]

(l — p)’

Is required to obtain a c.i. whose half length is 6d (0 < 6 < 1).

Since the average half length for p .5 was .098 of d (see Table II),

if we subs titute 6 = .098 into (3), we get a theoretical sample size of

8572. Similarl y, subs titution of 6 = .068 into (3) gives a theoretical

sample size of 75813 for p = .8. These sample sizes compare closely to

those actually obtained by the procedure .

B. An Inventory System

The second type of stochastic system we considered was an (s,S)

Inven tory system with zero delivery lag and back logging. This system

- -  
- 

~~~~:~~~~~~~ - -------.- — =~~~~~ - - - ---- .-- --- — -- ~~j;T -~---- - ~~
.-~~~~~ -~- -- 
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TABLE II. Empirical Results for Queueing Systems.

Number Proportion Average RelativeSystem p d of of Sample Prec is ionRuns Coverage Size

M/M/l FIFO .5 .50 100 .850 8352 .098

M/M/l FlED .8 3.20 200 .890 67584 .068

M/M/l LIFO .8 3.20 200 .805 19100 .141

Mill/i SIRO .8 3.20 200 .865 69280 .067

E~/M/ l .8 1.81 100 .830 42240 .075

M/112/l .8 8.00 100 .800 188926 .072

M/M/2 .8 2.84 100 .910 65792 .076

M/M/l/M/ l .8 6.40 100 .900 88832 .049

—-—--  — -- - -—-i—-.-— - -~ ---.-~- - - ~-T~”~ 
_~4
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is described in detail in [14). We made 100 i ndependent simulation

runs of the process {E~1i > U and attempted to construct 90% c.i. ’s

for the steady-state mean expenditure per period, e = 112.108. We

found that each run terminated on the first iteration (n = 800) and

that 99 out of 100 c.i. ’s covered e. These results can be explained

by the fact that p. (m) < 0 (i > 1) and b(40,lOm ) > 1 for this system

(see [14] for some actual va l ues).

C. Computer Model s

To see how the sequential procedure works on more complex systems ,

we simulated two models of computer systems. These models resemble more

closely the type of system that might actually be simulated in the rea l

world than do the simple models of the previous two subsections. We

H first considered a mode l of a time-shared computer system which was

studied by Adiri and Avi-Itzhak [1] and more recently in a simulation

context by Sargent [19). There are N terminals and a sing le centra l pro-

cessing unit (CPU) as shown in Figure 5. The operator of each termi nal

“thinks ” for an amount of time which is an exponential r.v. with rate

i~ and then sends a message with service time which is an exponential

r.v. with rate p2. The arriving jobs join a FIFO queue at the CPU.

The CPU allocates to each job a maximum service quantum of length q.

If the (remaining) service time of a job , s, is less than or equal to

q, then the CPU spends time s plus i (a fixed overhead) processing

the job and the job returns to its terminal. If a > q, then the CPU

spends time q plus T processing the job and the job joins the end of

the queue . This process is repeated until the job’s service time is

eventually completed.

- 
- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~---- --~~ - - - - 

- —
—~~ -~~~~-~
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Figure 5. Time-Shared Computer liodel .

Figure 6. Central-Server Computer Model .
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We let N = 35 , ~ = 1/25 , 
~ 2 

= 5/4 , q = .1 , T = .015, and then

simulated the stochastic process > l}, where R.  is the response

time of the ith job requesting service and all terminals are in the

think state at time zero. Our objective was to construct a 90% c.i.

for the steady-state mean response time , r = 8.246. tIe made 100 inde-

pendent runs and obtained a coverage of .92, an average sample size of

36160, and a relative precision of .036.

We next considered the central-server model of a multiprogrammed

computer system (see Buzen [4]). There is a CPU (unit 1) and /4— 1

peripheral units (units 2 through y) as shown in Fi gure 6. Each unit

has its own FIFO queue and the service time at unit i is an exponential

r.v. with rate p~ (i=l ,2 ,..,,N). It is assumed that there are N jobs in

the system at all times. When a job completes service at the CPU it

leaves the system with probability p 1 
or it goes to periphe ral unit i

with probability p. (i=2 ,3 , - .  ,M) . ~ job leaving the system is instanta-

neously replaced by a new job which joins the end of the CPU queue . A

job leaving a periphera l unit also joins the CPU queue.

We made 100 simulation runs of the process {R .,i > 1} for four

different sets of parameters and on each run we attempted to construct

a 90% c.i. for r (the steady-state mean time between entries to the CPU

queue). The parameters for these models and the results of the simula-

tions are given in Table III. Also included are the steady-state proba-

bility that unit i is busy , p., and the state of the system at time

ze ro , (~ 11 z23 . 
~~~~ 

where Z. is the number of jobs at unit i.

_ 
_  j
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4. Summary

We have used the sequential procedure to construct “90% c.i. ’s”

for 13 stochastic systems (excl uding the inventory model) 1 obtaining

coverages between .80 and .92 and relative precisions between .027

and .141 . Averaging over the 13 systems , we obtain a mean coverage

of .867 and a mean relative precision of .067.

The sequential procedure described here is fairly easy to program ,

is computatio nally efficient , and requires only 800 storage locations

to store the batch means. A FORTRAN program for the procedure and an

explanation of how to use it may be found in Law and Carson [15].

Appendix

Our objective is to prove Lemma 1 (see Section 2).

Lema A. 1. If c~ converges , then~~~ W~/m 0 as m ~~~~~~~~~

Proof: 
> 

Wi
/rn C~ 

- (m Z)C
~
/m.

The result follows since the second sum on the right -hand side converges

to C~ by Lemma 8.3.1 of Anderson [2, p. 460].

Lema A.?. If CQ converges , then S~(m) E (1 - 

~
/m)Cjm+j 0

as rn -, for ~ > 1. 

--~~~~~~~------ -~~~~~~~~~~ 
--~~~~~~ -- -..-~~~~~~~-—~~~ -~~~—--- - ___
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(i+l) m—l (j+l)m-i in? (j+l)m— l

Proof: S’.(m) = - LC~/m + 2.C~/rn + i C~ .

tim +l 9~~l L=1 9.im+l

The first and fourth sums converge to 0 since C~ converqes. The second

and third sums converge to 0 by Lemma A .l.

Lemma A .3. If C
L 

converges , then S~(m) (l-i/m)C
~~~~ 

0 as

m -
~~ for i > 1.

Proof: S~(m) = ( i m-j ) C .  ./ m - (i - 1) 

~~ 

C~~~.

im-l (i-1)m im—l

= LC~/m - LC~/m - (i - 1) C
L
.

L (i-1)m+l

The first and second sums converge to 0 by Lemma A .l . The third sum

converges to 0 sinc: CL converges.

Lemma 1 . If 0 - — , then .i ~~~) * 0 as - for =1 ,2 

Proof: Since ~~~~~~ mC. (m) / n i C 0 r~) and ‘nC 0 (m) -
~ C as -‘-‘i - 

- - - --~~ _ _ _ _



(see [2, p. 459]), it suffices to show that mC.(m) -. 0 as m -
~ ~~~ . However ,

mC.(m) = C. + S’
~(m) + S2.(m) (see [14]) and C. -‘ 0 as m -~~ s ince

C~ converges. The desired result now follows from Lemmas A.2 and A .3.
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